1 -
// Copyright 2018 Ulf Adams
 
2 -
//
 
3 -
// The contents of this file may be used under the terms of the Apache License,
 
4 -
// Version 2.0.
 
5 -
//
 
6 -
//    (See accompanying file LICENSE-Apache or copy at
 
7 -
//     http://www.apache.org/licenses/LICENSE-2.0)
 
8 -
//
 
9 -
// Alternatively, the contents of this file may be used under the terms of
 
10 -
// the Boost Software License, Version 1.0.
 
11 -
//    (See accompanying file LICENSE-Boost or copy at
 
12 -
//     https://www.boost.org/LICENSE_1_0.txt)
 
13 -
//
 
14 -
// Unless required by applicable law or agreed to in writing, this software
 
15 -
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 
16 -
// KIND, either express or implied.
 
17 -

 
18 -
// Runtime compiler options:
 
19 -
// -DRYU_DEBUG Generate verbose debugging output to stdout.
 
20 -
//
 
21 -
// -DRYU_ONLY_64_BIT_OPS Avoid using uint128_t or 64-bit intrinsics. Slower,
 
22 -
//     depending on your compiler.
 
23 -
//
 
24 -
// -DRYU_OPTIMIZE_SIZE Use smaller lookup tables. Instead of storing every
 
25 -
//     required power of 5, only store every 26th entry, and compute
 
26 -
//     intermediate values with a multiplication. This reduces the lookup table
 
27 -
//     size by about 10x (only one case, and only double) at the cost of some
 
28 -
//     performance. Currently requires MSVC intrinsics.
 
29 -

 
30 -
/*
 
31 -
    This is a derivative work
 
32 -
*/
 
33 -

 
34 -
#ifndef BOOST_JSON_DETAIL_RYU_IMPL_D2S_IPP
 
35 -
#define BOOST_JSON_DETAIL_RYU_IMPL_D2S_IPP
 
36 -

 
37 -
#include <boost/json/detail/ryu/ryu.hpp>
 
38 -
#include <cstdlib>
 
39 -
#include <cstring>
 
40 -

 
41 -
#ifdef RYU_DEBUG
 
42 -
#include <stdio.h>
 
43 -
#endif
 
44 -

 
45 -
// ABSL avoids uint128_t on Win32 even if __SIZEOF_INT128__ is defined.
 
46 -
// Let's do the same for now.
 
47 -
#if defined(__SIZEOF_INT128__) && !defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS)
 
48 -
#define BOOST_JSON_RYU_HAS_UINT128
 
49 -
#elif defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64)
 
50 -
#define BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS
 
51 -
#endif
 
52 -

 
53 -
#include <boost/json/detail/ryu/detail/common.hpp>
 
54 -
#include <boost/json/detail/ryu/detail/digit_table.hpp>
 
55 -
#include <boost/json/detail/ryu/detail/d2s.hpp>
 
56 -
#include <boost/json/detail/ryu/detail/d2s_intrinsics.hpp>
 
57 -

 
58 -
namespace boost {
 
59 -
namespace json {
 
60 -
namespace detail {
 
61 -

 
62 -
namespace ryu {
 
63 -
namespace detail {
 
64 -

 
65 -
// We need a 64x128-bit multiplication and a subsequent 128-bit shift.
 
66 -
// Multiplication:
 
67 -
//   The 64-bit factor is variable and passed in, the 128-bit factor comes
 
68 -
//   from a lookup table. We know that the 64-bit factor only has 55
 
69 -
//   significant bits (i.e., the 9 topmost bits are zeros). The 128-bit
 
70 -
//   factor only has 124 significant bits (i.e., the 4 topmost bits are
 
71 -
//   zeros).
 
72 -
// Shift:
 
73 -
//   In principle, the multiplication result requires 55 + 124 = 179 bits to
 
74 -
//   represent. However, we then shift this value to the right by j, which is
 
75 -
//   at least j >= 115, so the result is guaranteed to fit into 179 - 115 = 64
 
76 -
//   bits. This means that we only need the topmost 64 significant bits of
 
77 -
//   the 64x128-bit multiplication.
 
78 -
//
 
79 -
// There are several ways to do this:
 
80 -
// 1. Best case: the compiler exposes a 128-bit type.
 
81 -
//    We perform two 64x64-bit multiplications, add the higher 64 bits of the
 
82 -
//    lower result to the higher result, and shift by j - 64 bits.
 
83 -
//
 
84 -
//    We explicitly cast from 64-bit to 128-bit, so the compiler can tell
 
85 -
//    that these are only 64-bit inputs, and can map these to the best
 
86 -
//    possible sequence of assembly instructions.
 
87 -
//    x64 machines happen to have matching assembly instructions for
 
88 -
//    64x64-bit multiplications and 128-bit shifts.
 
89 -
//
 
90 -
// 2. Second best case: the compiler exposes intrinsics for the x64 assembly
 
91 -
//    instructions mentioned in 1.
 
92 -
//
 
93 -
// 3. We only have 64x64 bit instructions that return the lower 64 bits of
 
94 -
//    the result, i.e., we have to use plain C.
 
95 -
//    Our inputs are less than the full width, so we have three options:
 
96 -
//    a. Ignore this fact and just implement the intrinsics manually.
 
97 -
//    b. Split both into 31-bit pieces, which guarantees no internal overflow,
 
98 -
//       but requires extra work upfront (unless we change the lookup table).
 
99 -
//    c. Split only the first factor into 31-bit pieces, which also guarantees
 
100 -
//       no internal overflow, but requires extra work since the intermediate
 
101 -
//       results are not perfectly aligned.
 
102 -
#if defined(BOOST_JSON_RYU_HAS_UINT128)
 
103 -

 
104 -
// Best case: use 128-bit type.
 
105 -
inline
 
106 -
std::uint64_t
 
107 -
    mulShift(
 
108 -
    const std::uint64_t m,
 
109 -
    const std::uint64_t* const mul,
 
110 -
    const std::int32_t j) noexcept
 
111 -
{
 
112 -
    const uint128_t b0 = ((uint128_t) m) * mul[0];
 
113 -
    const uint128_t b2 = ((uint128_t) m) * mul[1];
 
114 -
    return (std::uint64_t) (((b0 >> 64) + b2) >> (j - 64));
 
115 -
}
 
116 -

 
117 -
inline
 
118 -
uint64_t
 
119 -
mulShiftAll(
 
120 -
    const std::uint64_t m,
 
121 -
    const std::uint64_t* const mul,
 
122 -
    std::int32_t const j,
 
123 -
    std::uint64_t* const vp,
 
124 -
    std::uint64_t* const vm,
 
125 -
    const std::uint32_t mmShift) noexcept
 
126 -
{
 
127 -
//  m <<= 2;
 
128 -
//  uint128_t b0 = ((uint128_t) m) * mul[0]; // 0
 
129 -
//  uint128_t b2 = ((uint128_t) m) * mul[1]; // 64
 
130 -
//
 
131 -
//  uint128_t hi = (b0 >> 64) + b2;
 
132 -
//  uint128_t lo = b0 & 0xffffffffffffffffull;
 
133 -
//  uint128_t factor = (((uint128_t) mul[1]) << 64) + mul[0];
 
134 -
//  uint128_t vpLo = lo + (factor << 1);
 
135 -
//  *vp = (std::uint64_t) ((hi + (vpLo >> 64)) >> (j - 64));
 
136 -
//  uint128_t vmLo = lo - (factor << mmShift);
 
137 -
//  *vm = (std::uint64_t) ((hi + (vmLo >> 64) - (((uint128_t) 1ull) << 64)) >> (j - 64));
 
138 -
//  return (std::uint64_t) (hi >> (j - 64));
 
139 -
    *vp = mulShift(4 * m + 2, mul, j);
 
140 -
    *vm = mulShift(4 * m - 1 - mmShift, mul, j);
 
141 -
    return mulShift(4 * m, mul, j);
 
142 -
}
 
143 -

 
144 -
#elif defined(BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS)
 
145 -

 
146 -
inline
 
147 -
std::uint64_t
 
148 -
mulShift(
 
149 -
    const std::uint64_t m,
 
150 -
    const std::uint64_t* const mul,
 
151 -
    const std::int32_t j) noexcept
 
152 -
{
 
153 -
    // m is maximum 55 bits
 
154 -
    std::uint64_t high1;                                   // 128
 
155 -
    std::uint64_t const low1 = umul128(m, mul[1], &high1); // 64
 
156 -
    std::uint64_t high0;                                   // 64
 
157 -
    umul128(m, mul[0], &high0);                            // 0
 
158 -
    std::uint64_t const sum = high0 + low1;
 
159 -
    if (sum < high0)
 
160 -
        ++high1; // overflow into high1
 
161 -
    return shiftright128(sum, high1, j - 64);
 
162 -
}
 
163 -

 
164 -
inline
 
165 -
std::uint64_t
 
166 -
mulShiftAll(
 
167 -
    const std::uint64_t m,
 
168 -
    const std::uint64_t* const mul,
 
169 -
    const std::int32_t j,
 
170 -
    std::uint64_t* const vp,
 
171 -
    std::uint64_t* const vm,
 
172 -
    const std::uint32_t mmShift) noexcept
 
173 -
{
 
174 -
    *vp = mulShift(4 * m + 2, mul, j);
 
175 -
    *vm = mulShift(4 * m - 1 - mmShift, mul, j);
 
176 -
    return mulShift(4 * m, mul, j);
 
177 -
}
 
178 -

 
179 -
#else // !defined(BOOST_JSON_RYU_HAS_UINT128) && !defined(BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS)
 
180 -

 
181 -
inline
 
182 -
std::uint64_t
 
183 -
mulShiftAll(
 
184 -
    std::uint64_t m,
 
185 -
    const std::uint64_t* const mul,
 
186 -
    const std::int32_t j,
 
187 -
    std::uint64_t* const vp,
 
188 -
    std::uint64_t* const vm,
 
189 -
    const std::uint32_t mmShift)
 
190 -
{
 
191 -
    m <<= 1;
 
192 -
    // m is maximum 55 bits
 
193 -
    std::uint64_t tmp;
 
194 -
    std::uint64_t const lo = umul128(m, mul[0], &tmp);
 
195 -
    std::uint64_t hi;
 
196 -
    std::uint64_t const mid = tmp + umul128(m, mul[1], &hi);
 
197 -
    hi += mid < tmp; // overflow into hi
 
198 -

 
199 -
    const std::uint64_t lo2 = lo + mul[0];
 
200 -
    const std::uint64_t mid2 = mid + mul[1] + (lo2 < lo);
 
201 -
    const std::uint64_t hi2 = hi + (mid2 < mid);
 
202 -
    *vp = shiftright128(mid2, hi2, (std::uint32_t)(j - 64 - 1));
 
203 -

 
204 -
    if (mmShift == 1)
 
205 -
    {
 
206 -
        const std::uint64_t lo3 = lo - mul[0];
 
207 -
        const std::uint64_t mid3 = mid - mul[1] - (lo3 > lo);
 
208 -
        const std::uint64_t hi3 = hi - (mid3 > mid);
 
209 -
        *vm = shiftright128(mid3, hi3, (std::uint32_t)(j - 64 - 1));
 
210 -
    }
 
211 -
    else
 
212 -
    {
 
213 -
        const std::uint64_t lo3 = lo + lo;
 
214 -
        const std::uint64_t mid3 = mid + mid + (lo3 < lo);
 
215 -
        const std::uint64_t hi3 = hi + hi + (mid3 < mid);
 
216 -
        const std::uint64_t lo4 = lo3 - mul[0];
 
217 -
        const std::uint64_t mid4 = mid3 - mul[1] - (lo4 > lo3);
 
218 -
        const std::uint64_t hi4 = hi3 - (mid4 > mid3);
 
219 -
        *vm = shiftright128(mid4, hi4, (std::uint32_t)(j - 64));
 
220 -
    }
 
221 -

 
222 -
    return shiftright128(mid, hi, (std::uint32_t)(j - 64 - 1));
 
223 -
}
 
224 -

 
225 -
#endif // BOOST_JSON_RYU_HAS_64_BIT_INTRINSICS
 
226 -

 
227 -
inline
 
228 -
std::uint32_t
 
229 -
decimalLength17(
 
230 -
    const std::uint64_t v)
 
231 -
{
 
232 -
    // This is slightly faster than a loop.
 
233 -
    // The average output length is 16.38 digits, so we check high-to-low.
 
234 -
    // Function precondition: v is not an 18, 19, or 20-digit number.
 
235 -
    // (17 digits are sufficient for round-tripping.)
 
236 -
    BOOST_ASSERT(v < 100000000000000000L);
 
237 -
    if (v >= 10000000000000000L) { return 17; }
 
238 -
    if (v >= 1000000000000000L) { return 16; }
 
239 -
    if (v >= 100000000000000L) { return 15; }
 
240 -
    if (v >= 10000000000000L) { return 14; }
 
241 -
    if (v >= 1000000000000L) { return 13; }
 
242 -
    if (v >= 100000000000L) { return 12; }
 
243 -
    if (v >= 10000000000L) { return 11; }
 
244 -
    if (v >= 1000000000L) { return 10; }
 
245 -
    if (v >= 100000000L) { return 9; }
 
246 -
    if (v >= 10000000L) { return 8; }
 
247 -
    if (v >= 1000000L) { return 7; }
 
248 -
    if (v >= 100000L) { return 6; }
 
249 -
    if (v >= 10000L) { return 5; }
 
250 -
    if (v >= 1000L) { return 4; }
 
251 -
    if (v >= 100L) { return 3; }
 
252 -
    if (v >= 10L) { return 2; }
 
253 -
    return 1;
 
254 -
}
 
255 -

 
256 -
// A floating decimal representing m * 10^e.
 
257 -
struct floating_decimal_64
 
258 -
{
 
259 -
    std::uint64_t mantissa;
 
260 -
    // Decimal exponent's range is -324 to 308
 
261 -
    // inclusive, and can fit in a short if needed.
 
262 -
    std::int32_t exponent;
 
263 -
};
 
264 -

 
265 -
inline
 
266 -
floating_decimal_64
 
267 -
d2d(
 
268 -
    const std::uint64_t ieeeMantissa,
 
269 -
    const std::uint32_t ieeeExponent)
 
270 -
{
 
271 -
    std::int32_t e2;
 
272 -
    std::uint64_t m2;
 
273 -
    if (ieeeExponent == 0)
 
274 -
    {
 
275 -
        // We subtract 2 so that the bounds computation has 2 additional bits.
 
276 -
        e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
 
277 -
        m2 = ieeeMantissa;
 
278 -
    }
 
279 -
    else
 
280 -
    {
 
281 -
        e2 = (std::int32_t)ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
 
282 -
        m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
 
283 -
    }
 
284 -
    const bool even = (m2 & 1) == 0;
 
285 -
    const bool acceptBounds = even;
 
286 -

 
287 -
#ifdef RYU_DEBUG
 
288 -
    printf("-> %" PRIu64 " * 2^%d\n", m2, e2 + 2);
 
289 -
#endif
 
290 -

 
291 -
    // Step 2: Determine the interval of valid decimal representations.
 
292 -
    const std::uint64_t mv = 4 * m2;
 
293 -
    // Implicit bool -> int conversion. True is 1, false is 0.
 
294 -
    const std::uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
 
295 -
    // We would compute mp and mm like this:
 
296 -
    // uint64_t mp = 4 * m2 + 2;
 
297 -
    // uint64_t mm = mv - 1 - mmShift;
 
298 -

 
299 -
    // Step 3: Convert to a decimal power base using 128-bit arithmetic.
 
300 -
    std::uint64_t vr, vp, vm;
 
301 -
    std::int32_t e10;
 
302 -
    bool vmIsTrailingZeros = false;
 
303 -
    bool vrIsTrailingZeros = false;
 
304 -
    if (e2 >= 0) {
 
305 -
        // I tried special-casing q == 0, but there was no effect on performance.
 
306 -
        // This expression is slightly faster than max(0, log10Pow2(e2) - 1).
 
307 -
        const std::uint32_t q = log10Pow2(e2) - (e2 > 3);
 
308 -
        e10 = (std::int32_t)q;
 
309 -
        const std::int32_t k = DOUBLE_POW5_INV_BITCOUNT + pow5bits((int32_t)q) - 1;
 
310 -
        const std::int32_t i = -e2 + (std::int32_t)q + k;
 
311 -
#if defined(BOOST_JSON_RYU_OPTIMIZE_SIZE)
 
312 -
        uint64_t pow5[2];
 
313 -
        double_computeInvPow5(q, pow5);
 
314 -
        vr = mulShiftAll(m2, pow5, i, &vp, &vm, mmShift);
 
315 -
#else
 
316 -
        vr = mulShiftAll(m2, DOUBLE_POW5_INV_SPLIT()[q], i, &vp, &vm, mmShift);
 
317 -
#endif
 
318 -
#ifdef RYU_DEBUG
 
319 -
        printf("%" PRIu64 " * 2^%d / 10^%u\n", mv, e2, q);
 
320 -
        printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
 
321 -
#endif
 
322 -
        if (q <= 21)
 
323 -
        {
 
324 -
            // This should use q <= 22, but I think 21 is also safe. Smaller values
 
325 -
            // may still be safe, but it's more difficult to reason about them.
 
326 -
            // Only one of mp, mv, and mm can be a multiple of 5, if any.
 
327 -
            const std::uint32_t mvMod5 = ((std::uint32_t)mv) - 5 * ((std::uint32_t)div5(mv));
 
328 -
            if (mvMod5 == 0)
 
329 -
            {
 
330 -
                vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
 
331 -
            }
 
332 -
            else if (acceptBounds)
 
333 -
            {
 
334 -
                // Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q
 
335 -
                // <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q
 
336 -
                // <=> true && pow5Factor(mm) >= q, since e2 >= q.
 
337 -
                vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q);
 
338 -
            }
 
339 -
            else
 
340 -
            {
 
341 -
                // Same as min(e2 + 1, pow5Factor(mp)) >= q.
 
342 -
                vp -= multipleOfPowerOf5(mv + 2, q);
 
343 -
            }
 
344 -
        }
 
345 -
    }
 
346 -
    else
 
347 -
    {
 
348 -
        // This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
 
349 -
        const std::uint32_t q = log10Pow5(-e2) - (-e2 > 1);
 
350 -
        e10 = (std::int32_t)q + e2;
 
351 -
        const std::int32_t i = -e2 - (std::int32_t)q;
 
352 -
        const std::int32_t k = pow5bits(i) - DOUBLE_POW5_BITCOUNT;
 
353 -
        const std::int32_t j = (std::int32_t)q - k;
 
354 -
#if defined(BOOST_JSON_RYU_OPTIMIZE_SIZE)
 
355 -
        std::uint64_t pow5[2];
 
356 -
        double_computePow5(i, pow5);
 
357 -
        vr = mulShiftAll(m2, pow5, j, &vp, &vm, mmShift);
 
358 -
#else
 
359 -
        vr = mulShiftAll(m2, DOUBLE_POW5_SPLIT()[i], j, &vp, &vm, mmShift);
 
360 -
#endif
 
361 -
#ifdef RYU_DEBUG
 
362 -
        printf("%" PRIu64 " * 5^%d / 10^%u\n", mv, -e2, q);
 
363 -
        printf("%u %d %d %d\n", q, i, k, j);
 
364 -
        printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
 
365 -
#endif
 
366 -
        if (q <= 1)
 
367 -
        {
 
368 -
            // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
 
369 -
            // mv = 4 * m2, so it always has at least two trailing 0 bits.
 
370 -
            vrIsTrailingZeros = true;
 
371 -
            if (acceptBounds)
 
372 -
            {
 
373 -
                // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
 
374 -
                vmIsTrailingZeros = mmShift == 1;
 
375 -
            }
 
376 -
            else
 
377 -
            {
 
378 -
                // mp = mv + 2, so it always has at least one trailing 0 bit.
 
379 -
                --vp;
 
380 -
            }
 
381 -
        }
 
382 -
        else if (q < 63)
 
383 -
        {
 
384 -
            // TODO(ulfjack): Use a tighter bound here.
 
385 -
            // We want to know if the full product has at least q trailing zeros.
 
386 -
            // We need to compute min(p2(mv), p5(mv) - e2) >= q
 
387 -
            // <=> p2(mv) >= q && p5(mv) - e2 >= q
 
388 -
            // <=> p2(mv) >= q (because -e2 >= q)
 
389 -
            vrIsTrailingZeros = multipleOfPowerOf2(mv, q);
 
390 -
#ifdef RYU_DEBUG
 
391 -
            printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
 
392 -
#endif
 
393 -
        }
 
394 -
    }
 
395 -
#ifdef RYU_DEBUG
 
396 -
    printf("e10=%d\n", e10);
 
397 -
    printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
 
398 -
    printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false");
 
399 -
    printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
 
400 -
#endif
 
401 -

 
402 -
    // Step 4: Find the shortest decimal representation in the interval of valid representations.
 
403 -
    std::int32_t removed = 0;
 
404 -
    std::uint8_t lastRemovedDigit = 0;
 
405 -
    std::uint64_t output;
 
406 -
    // On average, we remove ~2 digits.
 
407 -
    if (vmIsTrailingZeros || vrIsTrailingZeros)
 
408 -
    {
 
409 -
        // General case, which happens rarely (~0.7%).
 
410 -
        for (;;)
 
411 -
        {
 
412 -
            const std::uint64_t vpDiv10 = div10(vp);
 
413 -
            const std::uint64_t vmDiv10 = div10(vm);
 
414 -
            if (vpDiv10 <= vmDiv10)
 
415 -
                break;
 
416 -
            const std::uint32_t vmMod10 = ((std::uint32_t)vm) - 10 * ((std::uint32_t)vmDiv10);
 
417 -
            const std::uint64_t vrDiv10 = div10(vr);
 
418 -
            const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10);
 
419 -
            vmIsTrailingZeros &= vmMod10 == 0;
 
420 -
            vrIsTrailingZeros &= lastRemovedDigit == 0;
 
421 -
            lastRemovedDigit = (uint8_t)vrMod10;
 
422 -
            vr = vrDiv10;
 
423 -
            vp = vpDiv10;
 
424 -
            vm = vmDiv10;
 
425 -
            ++removed;
 
426 -
        }
 
427 -
#ifdef RYU_DEBUG
 
428 -
        printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
 
429 -
        printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false");
 
430 -
#endif
 
431 -
        if (vmIsTrailingZeros)
 
432 -
        {
 
433 -
            for (;;)
 
434 -
            {
 
435 -
                const std::uint64_t vmDiv10 = div10(vm);
 
436 -
                const std::uint32_t vmMod10 = ((std::uint32_t)vm) - 10 * ((std::uint32_t)vmDiv10);
 
437 -
                if (vmMod10 != 0)
 
438 -
                    break;
 
439 -
                const std::uint64_t vpDiv10 = div10(vp);
 
440 -
                const std::uint64_t vrDiv10 = div10(vr);
 
441 -
                const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10);
 
442 -
                vrIsTrailingZeros &= lastRemovedDigit == 0;
 
443 -
                lastRemovedDigit = (uint8_t)vrMod10;
 
444 -
                vr = vrDiv10;
 
445 -
                vp = vpDiv10;
 
446 -
                vm = vmDiv10;
 
447 -
                ++removed;
 
448 -
            }
 
449 -
        }
 
450 -
#ifdef RYU_DEBUG
 
451 -
        printf("%" PRIu64 " %d\n", vr, lastRemovedDigit);
 
452 -
        printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
 
453 -
#endif
 
454 -
        if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0)
 
455 -
        {
 
456 -
            // Round even if the exact number is .....50..0.
 
457 -
            lastRemovedDigit = 4;
 
458 -
        }
 
459 -
        // We need to take vr + 1 if vr is outside bounds or we need to round up.
 
460 -
        output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
 
461 -
    }
 
462 -
    else
 
463 -
    {
 
464 -
        // Specialized for the common case (~99.3%). Percentages below are relative to this.
 
465 -
        bool roundUp = false;
 
466 -
        const std::uint64_t vpDiv100 = div100(vp);
 
467 -
        const std::uint64_t vmDiv100 = div100(vm);
 
468 -
        if (vpDiv100 > vmDiv100)
 
469 -
        {
 
470 -
            // Optimization: remove two digits at a time (~86.2%).
 
471 -
            const std::uint64_t vrDiv100 = div100(vr);
 
472 -
            const std::uint32_t vrMod100 = ((std::uint32_t)vr) - 100 * ((std::uint32_t)vrDiv100);
 
473 -
            roundUp = vrMod100 >= 50;
 
474 -
            vr = vrDiv100;
 
475 -
            vp = vpDiv100;
 
476 -
            vm = vmDiv100;
 
477 -
            removed += 2;
 
478 -
        }
 
479 -
        // Loop iterations below (approximately), without optimization above:
 
480 -
        // 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
 
481 -
        // Loop iterations below (approximately), with optimization above:
 
482 -
        // 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
 
483 -
        for (;;)
 
484 -
        {
 
485 -
            const std::uint64_t vpDiv10 = div10(vp);
 
486 -
            const std::uint64_t vmDiv10 = div10(vm);
 
487 -
            if (vpDiv10 <= vmDiv10)
 
488 -
                break;
 
489 -
            const std::uint64_t vrDiv10 = div10(vr);
 
490 -
            const std::uint32_t vrMod10 = ((std::uint32_t)vr) - 10 * ((std::uint32_t)vrDiv10);
 
491 -
            roundUp = vrMod10 >= 5;
 
492 -
            vr = vrDiv10;
 
493 -
            vp = vpDiv10;
 
494 -
            vm = vmDiv10;
 
495 -
            ++removed;
 
496 -
        }
 
497 -
#ifdef RYU_DEBUG
 
498 -
        printf("%" PRIu64 " roundUp=%s\n", vr, roundUp ? "true" : "false");
 
499 -
        printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
 
500 -
#endif
 
501 -
        // We need to take vr + 1 if vr is outside bounds or we need to round up.
 
502 -
        output = vr + (vr == vm || roundUp);
 
503 -
    }
 
504 -
    const std::int32_t exp = e10 + removed;
 
505 -

 
506 -
#ifdef RYU_DEBUG
 
507 -
    printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
 
508 -
    printf("O=%" PRIu64 "\n", output);
 
509 -
    printf("EXP=%d\n", exp);
 
510 -
#endif
 
511 -

 
512 -
    floating_decimal_64 fd;
 
513 -
    fd.exponent = exp;
 
514 -
    fd.mantissa = output;
 
515 -
    return fd;
 
516 -
}
 
517 -

 
518 -
inline
 
519 -
int
 
520 -
to_chars(
 
521 -
    const floating_decimal_64 v,
 
522 -
    const bool sign,
 
523 -
    char* const result)
 
524 -
{
 
525 -
    // Step 5: Print the decimal representation.
 
526 -
    int index = 0;
 
527 -
    if (sign)
 
528 -
        result[index++] = '-';
 
529 -

 
530 -
    std::uint64_t output = v.mantissa;
 
531 -
    std::uint32_t const olength = decimalLength17(output);
 
532 -

 
533 -
#ifdef RYU_DEBUG
 
534 -
    printf("DIGITS=%" PRIu64 "\n", v.mantissa);
 
535 -
    printf("OLEN=%u\n", olength);
 
536 -
    printf("EXP=%u\n", v.exponent + olength);
 
537 -
#endif
 
538 -

 
539 -
    // Print the decimal digits.
 
540 -
    // The following code is equivalent to:
 
541 -
    // for (uint32_t i = 0; i < olength - 1; ++i) {
 
542 -
    //   const uint32_t c = output % 10; output /= 10;
 
543 -
    //   result[index + olength - i] = (char) ('0' + c);
 
544 -
    // }
 
545 -
    // result[index] = '0' + output % 10;
 
546 -

 
547 -
    std::uint32_t i = 0;
 
548 -
    // We prefer 32-bit operations, even on 64-bit platforms.
 
549 -
    // We have at most 17 digits, and uint32_t can store 9 digits.
 
550 -
    // If output doesn't fit into uint32_t, we cut off 8 digits,
 
551 -
    // so the rest will fit into uint32_t.
 
552 -
    if ((output >> 32) != 0)
 
553 -
    {
 
554 -
        // Expensive 64-bit division.
 
555 -
        std::uint64_t const q = div1e8(output);
 
556 -
        std::uint32_t output2 = ((std::uint32_t)output) - 100000000 * ((std::uint32_t)q);
 
557 -
        output = q;
 
558 -

 
559 -
        const std::uint32_t c = output2 % 10000;
 
560 -
        output2 /= 10000;
 
561 -
        const std::uint32_t d = output2 % 10000;
 
562 -
        const std::uint32_t c0 = (c % 100) << 1;
 
563 -
        const std::uint32_t c1 = (c / 100) << 1;
 
564 -
        const std::uint32_t d0 = (d % 100) << 1;
 
565 -
        const std::uint32_t d1 = (d / 100) << 1;
 
566 -
        std::memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c0, 2);
 
567 -
        std::memcpy(result + index + olength - i - 3, DIGIT_TABLE() + c1, 2);
 
568 -
        std::memcpy(result + index + olength - i - 5, DIGIT_TABLE() + d0, 2);
 
569 -
        std::memcpy(result + index + olength - i - 7, DIGIT_TABLE() + d1, 2);
 
570 -
        i += 8;
 
571 -
    }
 
572 -
    uint32_t output2 = (std::uint32_t)output;
 
573 -
    while (output2 >= 10000)
 
574 -
    {
 
575 -
#ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=38217
 
576 -
        const uint32_t c = output2 - 10000 * (output2 / 10000);
 
577 -
#else
 
578 -
        const uint32_t c = output2 % 10000;
 
579 -
#endif
 
580 -
        output2 /= 10000;
 
581 -
        const uint32_t c0 = (c % 100) << 1;
 
582 -
        const uint32_t c1 = (c / 100) << 1;
 
583 -
        memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c0, 2);
 
584 -
        memcpy(result + index + olength - i - 3, DIGIT_TABLE() + c1, 2);
 
585 -
        i += 4;
 
586 -
    }
 
587 -
    if (output2 >= 100) {
 
588 -
        const uint32_t c = (output2 % 100) << 1;
 
589 -
        output2 /= 100;
 
590 -
        memcpy(result + index + olength - i - 1, DIGIT_TABLE() + c, 2);
 
591 -
        i += 2;
 
592 -
    }
 
593 -
    if (output2 >= 10) {
 
594 -
        const uint32_t c = output2 << 1;
 
595 -
        // We can't use memcpy here: the decimal dot goes between these two digits.
 
596 -
        result[index + olength - i] = DIGIT_TABLE()[c + 1];
 
597 -
        result[index] = DIGIT_TABLE()[c];
 
598 -
    }
 
599 -
    else {
 
600 -
        result[index] = (char)('0' + output2);
 
601 -
    }
 
602 -

 
603 -
    // Print decimal point if needed.
 
604 -
    if (olength > 1) {
 
605 -
        result[index + 1] = '.';
 
606 -
        index += olength + 1;
 
607 -
    }
 
608 -
    else {
 
609 -
        ++index;
 
610 -
    }
 
611 -

 
612 -
    // Print the exponent.
 
613 -
    result[index++] = 'E';
 
614 -
    int32_t exp = v.exponent + (int32_t)olength - 1;
 
615 -
    if (exp < 0) {
 
616 -
        result[index++] = '-';
 
617 -
        exp = -exp;
 
618 -
    }
 
619 -

 
620 -
    if (exp >= 100) {
 
621 -
        const int32_t c = exp % 10;
 
622 -
        memcpy(result + index, DIGIT_TABLE() + 2 * (exp / 10), 2);
 
623 -
        result[index + 2] = (char)('0' + c);
 
624 -
        index += 3;
 
625 -
    }
 
626 -
    else if (exp >= 10) {
 
627 -
        memcpy(result + index, DIGIT_TABLE() + 2 * exp, 2);
 
628 -
        index += 2;
 
629 -
    }
 
630 -
    else {
 
631 -
        result[index++] = (char)('0' + exp);
 
632 -
    }
 
633 -

 
634 -
    return index;
 
635 -
}
 
636 -

 
637 -
static inline bool d2d_small_int(const uint64_t ieeeMantissa, const uint32_t ieeeExponent,
 
638 -
  floating_decimal_64* const v) {
 
639 -
  const uint64_t m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
 
640 -
  const int32_t e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
 
641 -

 
642 -
  if (e2 > 0) {
 
643 -
    // f = m2 * 2^e2 >= 2^53 is an integer.
 
644 -
    // Ignore this case for now.
 
645 -
    return false;
 
646 -
  }
 
647 -

 
648 -
  if (e2 < -52) {
 
649 -
    // f < 1.
 
650 -
    return false;
 
651 -
  }
 
652 -

 
653 -
  // Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52: 1 <= f = m2 / 2^-e2 < 2^53.
 
654 -
  // Test if the lower -e2 bits of the significand are 0, i.e. whether the fraction is 0.
 
655 -
  const uint64_t mask = (1ull << -e2) - 1;
 
656 -
  const uint64_t fraction = m2 & mask;
 
657 -
  if (fraction != 0) {
 
658 -
    return false;
 
659 -
  }
 
660 -

 
661 -
  // f is an integer in the range [1, 2^53).
 
662 -
  // Note: mantissa might contain trailing (decimal) 0's.
 
663 -
  // Note: since 2^53 < 10^16, there is no need to adjust decimalLength17().
 
664 -
  v->mantissa = m2 >> -e2;
 
665 -
  v->exponent = 0;
 
666 -
  return true;
 
667 -
}
 
668 -

 
669 -
} // detail
 
670 -

 
671 -
int
 
672 -
d2s_buffered_n(
 
673 -
    double f,
 
674 -
    char* result,
 
675 -
    bool allow_infinity_and_nan) noexcept
 
676 -
{
 
677 -
    using namespace detail;
 
678 -
    // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
 
679 -
    std::uint64_t const bits = double_to_bits(f);
 
680 -

 
681 -
#ifdef RYU_DEBUG
 
682 -
    printf("IN=");
 
683 -
    for (std::int32_t bit = 63; bit >= 0; --bit) {
 
684 -
        printf("%d", (int)((bits >> bit) & 1));
 
685 -
    }
 
686 -
    printf("\n");
 
687 -
#endif
 
688 -

 
689 -
    // Decode bits into sign, mantissa, and exponent.
 
690 -
    const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
 
691 -
    const std::uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1);
 
692 -
    const std::uint32_t ieeeExponent = (std::uint32_t)((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
 
693 -
    // Case distinction; exit early for the easy cases.
 
694 -
    if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0)) {
 
695 -
        // We changed how special numbers are output by default
 
696 -
        if (allow_infinity_and_nan)
 
697 -
            return copy_special_str(result, ieeeSign, ieeeExponent != 0, ieeeMantissa != 0);
 
698 -
        else
 
699 -
            return copy_special_str_conforming(result, ieeeSign, ieeeExponent != 0, ieeeMantissa != 0);
 
700 -

 
701 -
    }
 
702 -

 
703 -
    floating_decimal_64 v;
 
704 -
    const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v);
 
705 -
    if (isSmallInt) {
 
706 -
        // For small integers in the range [1, 2^53), v.mantissa might contain trailing (decimal) zeros.
 
707 -
        // For scientific notation we need to move these zeros into the exponent.
 
708 -
        // (This is not needed for fixed-point notation, so it might be beneficial to trim
 
709 -
        // trailing zeros in to_chars only if needed - once fixed-point notation output is implemented.)
 
710 -
        for (;;) {
 
711 -
            std::uint64_t const q = div10(v.mantissa);
 
712 -
            std::uint32_t const r = ((std::uint32_t) v.mantissa) - 10 * ((std::uint32_t) q);
 
713 -
            if (r != 0)
 
714 -
                break;
 
715 -
            v.mantissa = q;
 
716 -
            ++v.exponent;
 
717 -
        }
 
718 -
    }
 
719 -
    else {
 
720 -
        v = d2d(ieeeMantissa, ieeeExponent);
 
721 -
    }
 
722 -

 
723 -
    return to_chars(v, ieeeSign, result);
 
724 -
}
 
725 -

 
726 -
} // ryu
 
727 -

 
728 -
} // detail
 
729 -
} // namespace json
 
730 -
} // namespace boost
 
731 -

 
732 -
#endif